Alignment of brain activity leads to increased learning in the classroom

Alignment of brain activity leads to increased learning in the classroom

Review written by Jess Breda (PNI)

Have you ever wondered how information is transferred from one brain to another? This process can occur in a variety of ways, from verbal storytelling to simple hand gestures, and across different backgrounds, such as a flight attendant instructing a first time flyer, or a casual conversation with a friend. We gain information from others on a daily basis. However, to study this on a biological level requires the complicated task of recording from two brains experiencing the same stimuli and aligning their activity in time.

Continue reading

How do our previous choices inform our future decisions?

Constantinople graphical abstract

Review written by Renee Waters (PSY) 

Humans tend to make individual choices based on a series of past experiences, decisions, and outcomes. Just think about the last time you had some terrible take out: you might decide not to eat at that particular restaurant again based on your previous experience. Maybe, you take the same route to work every day because, in the past, there is less traffic on this particular route. The effects that past experiences have on choices are often termed sequential biases. These biases are present everywhere, especially in value-based decision making. You might wonder, what are the neural mechanisms driving this phenomenon? Christine Constantinople, a former postdoc at Princeton University and now an assistant professor at NYU, began to explore this question along with colleagues in the Brody Lab at Princeton.

Continue reading

What can amoebae teach us about “loners”?

Review written by Thiago T. Varella (PSY GS) and Gabriel T. Vercelli (PHY ‘20)

Ever since the spread of SARS-Cov-2 imposed quarantines of global reach, people around the world have voiced their frustrations about social isolation. Indeed, Aristotle said back in 4th century BC, “man is by nature a social animal,” highlighting that our unease towards isolation is at least as ancient as the Classical era. However, as seemingly unnatural as social isolation might be for humans, it plays a crucial role in the current attempts to stave off the pandemic. Interestingly, isolation might serve a similar purpose in the natural world! Individuals that do not engage in collective behaviors have been observed in many social species. This behavioral divergence is usually thought of as an error, a failure to perfectly coordinate all individuals in a population; but this isolation could, at least theoretically be premeditated or shaped by natural selection (Barta, 2016). This leads to the question: are these isolated individuals, also called “loners,” a mere consequence of failed synchronization of the group, or could they be a mechanism nature developed to mitigate the risks of collective action?

Continue reading

Learning to control the brain

Review written by Eleni Papadoyannis (PNI)

How do humans control a complex system like the brain? Over the years, neuroscientists have discovered numerous methods to do exactly that. Applying chemicals, such as muscimol, can drive inhibition to shut down a brain region. Alternatively, shining light can selectively activate certain cell types through the photo-sensitive protein channelrhodopsin. Sending electrical impulses via electrodes in deep brain stimulation (DBS) can also control regional activity in humans. Causal manipulation of the brain not only offers incredible insight into hypotheses relating neural activity to behavior, but also serves as a clinical tool. Electrical and magnetic stimulation methods have been used as therapies for treating patients with a variety of diseases and disorders, such as using DBS to control motor disruption in Parkinson’s. A major limitation with many stimulation methods, however, is that the protocol is static while the brain is plastic—over time, brain responses to stimulation may no longer elicit what was intended as the brain naturally changes. 

Continue reading

Understanding visual navigation

Understanding visual navigation using cue cells

Review written by Sara Camilli (QCB) and Adelaide Minerva (PNI)

As we go about our daily lives, we often do not consciously think about all the real-world landmarks that we use to position ourselves in space. Yet, as we walk to our local coffee shop or go for a jog in the park, our brain is continuously updating its internal representation of our location, which is critical to our ability to navigate the world. However, we also know that humans and a number of animals can update this internal representation of their position in space even in the absence of external cues. This phenomenon, known as path integration, involves interaction between the parietal cortex, medial entorhinal cortex (MEC), and hippocampus regions of the brain. Prior work has shown that grid cells in the MEC have firing fields that are arrayed in a hexagonal lattice, tiling an environment. Further, there is evidence of inputs to the MEC that encode the velocity at which an animal is moving, which can be used to update the animal’s internal representation of its position. Together, these features support a role of the MEC in path integration. 

Continue reading

How do our beliefs converge?

How beliefs converge

Review written by Crystal Lee (PSY) and Adelaide Minerva (PNI)

Recently, the term “fake news” has been solidified as a colloquial term. Indeed, it seems the world has seen an increase in the spread of misinformation. What is particularly troubling about this trend is that psychology studies show that increased exposure to information (both true and false) increases our beliefs about its truthfulness, and what we believe to be true impacts our behavior in important ways (e.g., voting). When we consider the spread of “fake news”, how do we know what is true, and how do we protect ourselves from misinformation? 

Continue reading