The moment-to-moment pitch dynamics of child-directed speech shape toddlers’ attention and learning

Review written by Liza Mankovskaya (SLA, G7)

Have you ever wondered why we tend to talk to children in a different way than we speak to adults? You might think there isn’t much to it. After all, kids are cute, so adults melt, and hence - “baby talk.” Yet, this difference serves a very important purpose. Several decades of studies have shown that children, from young infants to toddlers, prefer this kind of speech; most importantly, when exposed to speech directed to them in this way, children are more engaged and learn more. But why? We can first consider the differences between speech to children, and speech between adults. One of the most recognizable ways in which caregivers tend to speak to children--child-directed-speech (CDS)--is characterized by significant variation in pitch and intonation. Compared to CDS, “adult” voice and intonations are much more monotonous, so children have a harder time concentrating. Thus, researchers believe that the overall higher level of engagement engendered by CDS promotes learning in children. What is less known, however, is how children process and learn from specific patterns of stress and intonation of CDS on the level of individual words. Recently, Princeton researchers Mira Nencheva, Elise Piazza, and Professor Casey Lew-Williams in the department of Psychology took on exactly this question. They identified specific ways in which caregivers’ pitch changed throughout a word (pitch contours) of CDS in English and analyzed how engaged  two-year-old children were during these different pitch contours and how well they learned novel words that followed these contours. Their findings provide a sub-second frame for understanding the mechanisms and features of CDS that make it optimal for children as they listen to CDS in real time. 

Continue reading

A new strategy for putting yeast to work

Review written by Sarah McFann (CBE, G5)

Many household goods, from dyes and plastics to contact lenses and aspirin, are made using petroleum byproducts. Over the past 150 years, chemical catalysts have been optimized to efficiently convert crude oil into starting materials for a wide range of products. Unfortunately, petroleum is a non-renewable resource, and emissions from petroleum processing are a big contributor to climate change. A team of bioengineers from the Avalos Lab at Princeton University is investigating an alternative: a petroleum-free way of manufacturing carbon-based goods that uses genetically engineered yeast to convert sugar into high-value products. 

Continue reading

New mathematical insights into fusion equilibria

Review written by Jaydeep Singh (MATH, G2)

Princeton scientists have long been at the forefront of research into nuclear fusion, a challenging process in which light atomic nuclei—hydrogen, for example—are chemically fused together to form heavier elements. The process releases immense amounts of energy, and is a promising approach for meeting the world’s energy needs. Early research dating from the post-war period explored designs for fusion-based weapons, but quickly interest turned to the process of harnessing fusion to generate usable electricity. Fusion research is a vast field encompassing both theoretical and experimental work, and it is not hard to see why controlled fusion remains a difficult problem after almost a century of progress: a prerequisite to achieving the fusion of light ions is the ability to super-heat the ions, in the form of a plasma, up to temperatures of 108 Kelvin within large reactors. To do this, all while maintaining the ability to confine and control the plasma, is no easy engineering feat.

Continue reading

Structural insights into the liquid-like center of the eukaryotic CO2 concentrating organelle, the pyrenoid

Review written by Jessi Hennacy (MOL, G4)

All plants use the enzyme Rubisco to capture CO2 during photosynthesis, but Rubisco is hindered by a slow reaction rate and a counter-productive reaction that happens when the enzyme binds to oxygen instead of CO2. Algae, however, have a special organelle called pyrenoid that helps Rubisco capture CO2 more efficiently. Whereas most plants need to express high amounts of Rubisco to capture enough CO2 to grow, the pyrenoid supplies Rubisco with concentrated amounts of CO2 to improve the enzyme’s CO2 capturing activity. If a pyrenoid could be genetically engineered into crops, it could be possible for the plants to capture the same amount of CO2  with less Rubisco, thereby helping them grow with fewer resources. However, this advancement requires understanding the functional roles of proteins involved in building a pyrenoid. 

Continue reading

Automating Observations with Talmo Pereira

Episode 2 of Princeton Insights: The Highlights

In this episode of The Highlights, we're joined by Talmo Pereira, a Ph.D. candidate in the Department of Neuroscience. Pereira holds a Porter Ogden Jacobus Fellowship, one of the highest graduate honors given by the University. We discuss the ups and downs of grad school and how the software he is developing, Social LEAP Estimates Animal Poses (SLEAP), is working to unite neuroscience, ecology, and computer science.

RESOURCES:

Princeton Insights coverage: A computational model for automated tracking of socially-interacting animals.

Original Paper: SLEAP: Multi-animal pose tracking.

Coverage by the Daily Princetonian.

CREDITS:

This episode of The Highlights was produced under the 145th Managing Board of the Daily Princetonian in partnership with Princeton Insights. Talmo Pereira is a Ph.D. candidate in the Department of Neuroscience. He can be reached at talmo@princeton.edu.

Written/Hosted by Thiago Tarraf Varella GS and Andy Jones GS.

Produced by Isabel Rodrigues.

Original Insights Coverage by Andy Jones GS.

Subscribe to The Highlights on SpotifyPodcast Addict, or wherever you get your podcasts! And subscribe to the Daily Princetonian to get the latest news at Princeton!

#MeToo? Perceptions of sexual harassment depend on the victim’s femininity

Review written by Leon Mait (PSY, G2)

In October 2017, actress Alyssa Milano tweeted a call for women who had been sexually harassed to reply to her post saying “Me too”, aiming to give the public a sense of how pervasive the experience of sexual harassment is. This ignited the Me Too movement as we know it. However, ten years earlier, social activist Tarana Burke had already started using the phrase on her Myspace page to promote empowerment among women of color who had been sexually abused. Milano did later credit Burke with coining the phrase, but the fact that it took a White woman to bring national attention to a social movement spearheaded by a Black woman is telling.

Continue reading

Using virtual reality to demonstrate the environmental reinstatement effect

Written by Paula Brooks (PNI, G4)

Walking through your old high school might release a flood of memories that were locked away for years, perhaps even a decade (or more)! Walking through the cafeteria might remind you of the time you almost scared the timid new girl when you boldly walked up to her to invite her to join your friend group for lunch. Or maybe, going past the gym might bring back the memory of when you face planted in front of the entire class while attempting to do the high jump. (Full disclosure: Both of these things happened to me.)

Continue reading

The development of visual-spatial biases in children

Written by Munisa Said (PSY, 2022) & Crystal Lee (PSY, GS2)

How good are you at finding Waldo? Whether you’re good or bad at it, finding Waldo is not a trivial task. To do so, you must be able to direct your attention to a specific location in a scene, process a massive amount of noisy input, and, finally, make sense of it. Tasks that you perform in your everyday life like reading, driving, cooking--and yes, finding Waldo--all depend on your ability to direct your visuo-spatial attention, the attentional mechanism that allows you to select information from a specific location in space for processing, as well as filter out irrelevant information from other locations. 

Continue reading

New tricks to study the cell's trickiest proteins

Review by Abigail Stanton (MOL, G1)

The cell can be a chaotic place to work. Protein employees of all different types rush from room to room, delivering messages, building needed materials, and working together to keep the cell running smoothly. To learn how any one of these proteins does its job, researchers have to consider how they will structure their experiment to get the type of information that they need. One approach is observing the protein at work: what does it do on a normal day? How does it interact with its coworkers? Studying a protein in situ (in its original place) gives researchers the best sense of how the protein actually behaves. However, the complex environment of the cell can make it difficult to pick out the contributions of any one protein. To gain more detailed information, the researcher may need to sit the protein down for a one-on-one interview, purifying it away from the other components of the cell for in vitro (in a test tube) experiments. However, a protein’s behavior alone may be very different from how it acts surrounded by a crowd of molecules. To create the most useful experiment possible, researchers need to find ways to combine the context of in situ studies with the detail and experimental control of in vitro work. 

Continue reading

Prince, perception and purple: The colorful world of wild hummingbirds

Review written by Jarome Ali (EEB, G4)

Who is the funkiest musician of all time, and why is it Prince? And what does this have to do with hummingbirds? 

Central to Prince’s aesthetic was his tasteful use of purple, so much so that Pantone Color Institute released a shade of purple in his honor. Prince was on to something. Purple is not just the color of royalty, but it is also unique among the colors we can see--it is nonspectral.

Continue reading