Why the Zebra Got its Stripes: exploring the anti-parasite hypothesis

Review written by Laura W. Hirschfield, UG ‘24 (Neuroscience)

Scientists have continued to debate for centuries the reasons behind why the zebra got its stripes. The zebra’s pattern is rare in the animal kingdom, intensely expressed in both sexes, conspicuous, and yet, its utility is not apparent. Unlike the many other hoofed mammals, called ungulates, that also occupy the east African savannah, the stripes do not provide camouflage for any of the habitats zebras occupy.

Continue reading "Why the Zebra Got its Stripes: exploring the anti-parasite hypothesis"

Meant to protect, made to neglect: exposing parks’ true efficacy in keeping species safe

Review written by Natalie Wong (2025, EEB)

The term “protected area” in the context of wildlife preservation calls to mind an idyllic haven untouched by civilization, where all organisms have the resources they need to thrive. The expectation is that animals–particularly those facing endangerment or extinction–will be kept safe from the humans who contribute to the rapid dwindling of their populations through laws put in place by humans. This paradoxical involvement of people is precisely where issues arise. 

Continue reading "Meant to protect, made to neglect: exposing parks’ true efficacy in keeping species safe"

Decoding Mosquitoes with Zhilei Zhao

Episode 3 of Princeton Insights: The Highlights

In this episode of The Highlights, we're joined by Zhilei Zhao, a former graduate student in the McBride Lab of the Department of Ecology and Evolutionary Biology and the Princeton Neuroscience Institute. We discuss his experiences working in the lab during the COVID-19 pandemic, as well as his study of the delicate neuroscience of mosquitoes and its potential impact on the fight against malaria and other insect-borne illnesses.

This episode of The Highlights was produced under the 145th Managing Board of The Daily Princetonian in partnership with Princeton Insights. Zhilei Zhao is a post-doc in the Goldberg Lab at Cornell University. He can be reached at zz367@cornell.edu.

Additional Resources:

Princeton Insights coverage: Infectious mosquitoes decode the unique smell of humans to pick their next meal

Original Paper: Chemical signatures of human odour generate a unique neural code in the brain of Aedes aegypti mosquitoes

Coverage by the Daily Princetonian

Credits:

Written/Hosted by Thiago Tarraf Varella GS and Olivia Duddy GS

Produced by Isabel Rodrigues

Original Insights Coverage by Olivia Duddy GS

Subscribe to The Highlights on SpotifyPodcast Addict, or wherever you get your podcasts! And subscribe to the Daily Princetonian to get the latest news at Princeton!

Why some mosquitoes prefer biting us

Review written by Jessi Hennacy (MOL)

There are about 3500 mosquito species worldwide, but only a handful of them are responsible for the transmission of mosquito-borne illnesses such as malaria and dengue fever. Whereas most mosquito species are generalists that lack a preference for a particular animal, the specialist mosquito species that prefer biting humans over other animals are also the species that most widely spread human diseases. Understanding the environmental factors that are driving these mosquitoes to prefer humans could help uncover strategies for mitigating the spread of mosquito-borne illnesses. It is therefore vital for public health to ask why and how certain mosquitoes have evolved to target humans.

Continue reading

What can amoebae teach us about “loners”?

Review written by Thiago T. Varella (PSY GS) and Gabriel T. Vercelli (PHY ‘20)

Ever since the spread of SARS-Cov-2 imposed quarantines of global reach, people around the world have voiced their frustrations about social isolation. Indeed, Aristotle said back in 4th century BC, “man is by nature a social animal,” highlighting that our unease towards isolation is at least as ancient as the Classical era. However, as seemingly unnatural as social isolation might be for humans, it plays a crucial role in the current attempts to stave off the pandemic. Interestingly, isolation might serve a similar purpose in the natural world! Individuals that do not engage in collective behaviors have been observed in many social species. This behavioral divergence is usually thought of as an error, a failure to perfectly coordinate all individuals in a population; but this isolation could, at least theoretically be premeditated or shaped by natural selection (Barta, 2016). This leads to the question: are these isolated individuals, also called “loners,” a mere consequence of failed synchronization of the group, or could they be a mechanism nature developed to mitigate the risks of collective action?

Continue reading